Construction of recursive algorithms for polarity matrices calculation in polynomial logical function representation

There is no algorithm for the calculation of optimal fixed polarity expansion. Therefore, the efficient calculation of polarity matrix consisting of all fixed polarity expansion coefficients is very important task. We show that polarity matrix can be generated as convolution of function f with rows...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Janković Dragan
Testületi szerző: Conference for PhD Students in Computer Science (1.) (1998) (Szeged)
Dokumentumtípus: Cikk
Megjelent: 1999
Sorozat:Acta cybernetica 14 No. 2
Kulcsszavak:Számítástechnika, Kibernetika
Tárgyszavak:
Online Access:http://acta.bibl.u-szeged.hu/12626
LEADER 01776nab a2200229 i 4500
001 acta12626
005 20220614091249.0
008 161015s1999 hu o 0|| eng d
022 |a 0324-721X 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Janković Dragan 
245 1 0 |a Construction of recursive algorithms for polarity matrices calculation in polynomial logical function representation  |h [elektronikus dokumentum] /  |c  Janković Dragan 
260 |c 1999 
300 |a 263-283 
490 0 |a Acta cybernetica  |v 14 No. 2 
520 3 |a There is no algorithm for the calculation of optimal fixed polarity expansion. Therefore, the efficient calculation of polarity matrix consisting of all fixed polarity expansion coefficients is very important task. We show that polarity matrix can be generated as convolution of function f with rows of relates transform matrix. The recursive properties of the convolution matrix affect to properties of polarity matrix. In literature are known some recursive algorithms for the calculation of polarity matrix of some expressions for Multiple-valued (MV) functions [3,6]. We give a unique method to construct recursive procedures for the polarity matrices calculation for any Kronecker product based expression of MV functions. As a particular cases we derive • two recursive algorithms for calculation of fixed polarity Reed-Muller-Fourier expressions for four-valued functions. 
650 4 |a Természettudományok 
650 4 |a Számítás- és információtudomány 
695 |a Számítástechnika, Kibernetika 
710 |a Conference for PhD Students in Computer Science (1.) (1998) (Szeged) 
856 4 0 |u http://acta.bibl.u-szeged.hu/12626/1/cybernetica_014_numb_002_263-283.pdf  |z Dokumentum-elérés