Oscillatory property of solutions to nonlinear eigenvalue problems

This paper is concerned with the nonlinear eigenvalue problem −u 00(t) = λ (u(t) + g(u(t))), u(t) > 0, t ∈ I := (−1, 1), u(±1) = 0, where g(u) = u p sin(u q ) (0 ≤ p < 1, 0 < q ≤ 1) and λ > 0 is a bifurcation parameter. It is known that, for a given α > 0, there exists a unique soluti...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Shibata Tetsutaro
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Oszcilláció - differenciálegyenlet, Bifurkáció
doi:10.14232/ejqtde.2019.1.67

Online Access:http://acta.bibl.u-szeged.hu/62291
LEADER 01474nas a2200205 i 4500
001 acta62291
005 20210916104232.0
008 190930s2019 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2019.1.67  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Shibata Tetsutaro 
245 1 0 |a Oscillatory property of solutions to nonlinear eigenvalue problems  |h [elektronikus dokumentum] /  |c  Shibata Tetsutaro 
260 |c 2019 
300 |a 1-9 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a This paper is concerned with the nonlinear eigenvalue problem −u 00(t) = λ (u(t) + g(u(t))), u(t) > 0, t ∈ I := (−1, 1), u(±1) = 0, where g(u) = u p sin(u q ) (0 ≤ p < 1, 0 < q ≤ 1) and λ > 0 is a bifurcation parameter. It is known that, for a given α > 0, there exists a unique solution pair (λ(α), uα) ∈ R+ × C 2 (I) satisfying α = kuαk∞ (= uα(0)). We establish the precise asymptotic formula for L r -norm kuαkr (1 ≤ r < ∞) of the solution uα as α → ∞ to show the evidence that uα(t) is oscillatory as α → ∞. We also obtain the asymptotic formula for λ in L r -framework, which has different property from that for diffusive logistic equation of population dynamics. 
695 |a Oszcilláció - differenciálegyenlet, Bifurkáció 
856 4 0 |u http://acta.bibl.u-szeged.hu/62291/1/ejqtde_2019_067_001-009.pdf  |z Dokumentum-elérés