Toward the development of iteration procedures for the interval-based simulation of fractional-order systems

In many fields of engineering as well as computational physics, it is necessary to describe dynamic phenomena which are characterized by an infinitely long horizon of past state values. This infinite horizon of past data then influences the evolution of future state trajectories. Such phenomena can...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Rauh Andreas
Kersten Julia
Dokumentumtípus: Cikk
Megjelent: University of Szeged, Institute of Informatics Szeged 2021
Sorozat:Acta cybernetica 25 No. 1
Kulcsszavak:Mittag-Leffler függvények, Differenciálegyenlet - frakcionális sorrendű, Picard iteráció
Tárgyszavak:
doi:10.14232/actacyb.285660

Online Access:http://acta.bibl.u-szeged.hu/73078
LEADER 02770nab a2200241 i 4500
001 acta73078
005 20230221093502.0
008 210719s2021 hu o 0|| eng d
022 |a 0324-721X 
024 7 |a 10.14232/actacyb.285660  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Rauh Andreas 
245 1 0 |a Toward the development of iteration procedures for the interval-based simulation of fractional-order systems  |h [elektronikus dokumentum] /  |c  Rauh Andreas 
260 |a University of Szeged, Institute of Informatics  |b Szeged  |c 2021 
300 |a 21-48 
490 0 |a Acta cybernetica  |v 25 No. 1 
520 3 |a In many fields of engineering as well as computational physics, it is necessary to describe dynamic phenomena which are characterized by an infinitely long horizon of past state values. This infinite horizon of past data then influences the evolution of future state trajectories. Such phenomena can be characterized effectively by means of fractional-order differential equations. In contrast to classical linear ordinary differential equations, linear fractional-order models have frequency domain characteristics with amplitude responses that deviate from the classical integer multiples of ±20 dB per frequency decade and, respectively, deviate from integer multiples of ± 2 in the limit values of their corresponding phase response. Although numerous simulation approaches have been developed in recent years for the numerical evaluation of fractional-order models with point-valued initial conditions and parameters, the robustness analysis of such system representations is still a widely open area of research. This statement is especially true if interval uncertainty is considered with respect to initial states and parameters. Therefore, this paper summarizes the current state-of-the-art concerning the simulation-based analysis of fractional-order dynamics with a restriction to those approaches that can be extended to set-valued (interval) evaluations for models with bounded uncertainty. Especially, it is shown how verified simulation techniques for integer-order models with uncertain parameters can be extended toward fractional counterparts. Selected linear as well as nonlinear illustrating examples conclude this paper to visualize algorithmic properties of the suggested interval-based simulation methodology and point out directions of ongoing research. 
650 4 |a Természettudományok 
650 4 |a Számítás- és információtudomány 
695 |a Mittag-Leffler függvények, Differenciálegyenlet - frakcionális sorrendű, Picard iteráció 
700 0 1 |a Kersten Julia  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/73078/1/cybernetica_025_numb_001_021-048.pdf  |z Dokumentum-elérés