Criteria for the existence of positive solutions to delayed functional differential equations

The paper is concerned with the large time behavior of solutions to functional delayed differential equations y˙(t) = f(t, yt) where f : Ωn 7→ Rn is a continuous map satisfying a local Lipschitz condition with respect to the second argument and Ωn is an open subset in R × Cn, Cn := Cn([−r, 0], Rn ),...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Diblík Josef
Dokumentumtípus: Folyóirat
Megjelent: 2016
Sorozat:Electronic journal of qualitative theory of differential equations : special edition 2 No. 68
Kulcsszavak:Differenciálegyenlet - késleltetett
doi:10.14232/ejqtde.2016.1.68

Online Access:http://acta.bibl.u-szeged.hu/73735
LEADER 01295nas a2200205 i 4500
001 acta73735
005 20211112094205.0
008 211111s2016 hu o 0|| eng d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2016.1.68  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Diblík Josef 
245 1 0 |a Criteria for the existence of positive solutions to delayed functional differential equations  |h [elektronikus dokumentum] /  |c  Diblík Josef 
260 |c 2016 
300 |a 15 
490 0 |a Electronic journal of qualitative theory of differential equations : special edition  |v 2 No. 68 
520 3 |a The paper is concerned with the large time behavior of solutions to functional delayed differential equations y˙(t) = f(t, yt) where f : Ωn 7→ Rn is a continuous map satisfying a local Lipschitz condition with respect to the second argument and Ωn is an open subset in R × Cn, Cn := Cn([−r, 0], Rn ), r > 0. Criteria on the existence of positive solutions (different from the well-known published results) and their estimates from above are derived. The results are illustrated by examples. 
695 |a Differenciálegyenlet - késleltetett 
856 4 0 |u http://acta.bibl.u-szeged.hu/73735/1/ejqtde_spec_002_2016_068.pdf  |z Dokumentum-elérés