Existence and exponential stability of periodic solutions of Nicholson-type systems with nonlinear density-dependent mortality and linear harvesting

In this work we study a Nicholson-type periodic system with variable delay, density-dependent mortality and linear harvesting rate. Using the topological degree and Lyapunov stability theories, we obtain sufficient conditions that allow us to demonstrate the existence of periodic solutions for the N...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Ossandón Gustavo
Sepúlveda Daniel
Dokumentumtípus: Folyóirat
Megjelent: 2023
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Nicholson-típusú rendszerek, Differenciálegyenlet - nemlineáris
doi:10.14232/ejqtde.2023.1.15

Online Access:http://acta.bibl.u-szeged.hu/82265
LEADER 01399nas a2200217 i 4500
001 acta82265
005 20231116112532.0
008 231116s2023 hu o 0|| eng d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2023.1.15  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Ossandón Gustavo 
245 1 0 |a Existence and exponential stability of periodic solutions of Nicholson-type systems with nonlinear density-dependent mortality and linear harvesting  |h [elektronikus dokumentum] /  |c  Ossandón Gustavo 
260 |c 2023 
300 |a 18 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a In this work we study a Nicholson-type periodic system with variable delay, density-dependent mortality and linear harvesting rate. Using the topological degree and Lyapunov stability theories, we obtain sufficient conditions that allow us to demonstrate the existence of periodic solutions for the Nicholson-type system and, under suitable conditions, the uniqueness and local exponential stability of the periodic solution is established. We illustrate our results with an example and numerical simulations. 
695 |a Nicholson-típusú rendszerek, Differenciálegyenlet - nemlineáris 
700 0 1 |a Sepúlveda Daniel  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/82265/1/ejqtde_2023_015.pdf  |z Dokumentum-elérés