Early prediction of acute necrotizing pancreatitis by artificial intelligence a prospective cohort-analysis of 2387 cases /

Pancreatic necrosis is a consistent prognostic factor in acute pancreatitis (AP). However, the clinical scores currently in use are either too complicated or require data that are unavailable on admission or lack sufficient predictive value. We therefore aimed to develop a tool to aid in necrosis pr...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Kiss Szabolcs
Pintér József
Molontay Roland
Nagy Marcell
Borbásné Farkas Kornélia
Sipos Zoltán
Fehérvári Péter
Földi Mária
Vincze Áron
Takács Tamás
Czakó László
Faluhelyi Nándor
Farkas Orsolya
Váncsa Szilárd
Hegyi Péter Jenő
Márta Katalin
Erőss Bálint Mihály
Molnár Zsolt
Párniczky Andrea
Hegyi Péter
Szentesi Andrea Ildikó
Kollaborációs szervezet Hungarian Pancreatic Study Group
Dokumentumtípus: Cikk
Megjelent: 2022
Sorozat:SCIENTIFIC REPORTS 12 No. 1
Tárgyszavak:
doi:10.1038/s41598-022-11517-w

mtmt:32823615
Online Access:http://publicatio.bibl.u-szeged.hu/24366
LEADER 02992nab a2200469 i 4500
001 publ24366
005 20220518121229.0
008 220518s2022 hu o 0|| Angol d
022 |a 2045-2322 
024 7 |a 10.1038/s41598-022-11517-w  |2 doi 
024 7 |a 32823615  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a Angol 
100 1 |a Kiss Szabolcs 
245 1 0 |a Early prediction of acute necrotizing pancreatitis by artificial intelligence   |h [elektronikus dokumentum] :  |b a prospective cohort-analysis of 2387 cases /  |c  Kiss Szabolcs 
260 |c 2022 
300 |a Terjedelem: 11 p.-Azonosító: 7827 
490 0 |a SCIENTIFIC REPORTS  |v 12 No. 1 
520 3 |a Pancreatic necrosis is a consistent prognostic factor in acute pancreatitis (AP). However, the clinical scores currently in use are either too complicated or require data that are unavailable on admission or lack sufficient predictive value. We therefore aimed to develop a tool to aid in necrosis prediction. The XGBoost machine learning algorithm processed data from 2387 patients with AP. The confidence of the model was estimated by a bootstrapping method and interpreted via the 10th and the 90th percentiles of the prediction scores. Shapley Additive exPlanations (SHAP) values were calculated to quantify the contribution of each variable provided. Finally, the model was implemented as an online application using the Streamlit Python-based framework. The XGBoost classifier provided an AUC value of 0.757. Glucose, C-reactive protein, alkaline phosphatase, gender and total white blood cell count have the most impact on prediction based on the SHAP values. The relationship between the size of the training dataset and model performance shows that prediction performance can be improved. This study combines necrosis prediction and artificial intelligence. The predictive potential of this model is comparable to the current clinical scoring systems and has several advantages over them. 
650 4 |a Endokrinológia és anyagcserebetegségek (benne cukorbetegség, hormonok) 
700 0 1 |a Pintér József  |e aut 
700 0 1 |a Molontay Roland  |e aut 
700 0 1 |a Nagy Marcell  |e aut 
700 0 2 |a Borbásné Farkas Kornélia  |e aut 
700 0 2 |a Sipos Zoltán  |e aut 
700 0 2 |a Fehérvári Péter  |e aut 
700 0 2 |a Földi Mária  |e aut 
700 0 2 |a Vincze Áron  |e aut 
700 0 2 |a Takács Tamás  |e aut 
700 0 2 |a Czakó László  |e aut 
700 0 2 |a Faluhelyi Nándor  |e aut 
700 0 2 |a Farkas Orsolya  |e aut 
700 0 2 |a Váncsa Szilárd  |e aut 
700 0 2 |a Hegyi Péter Jenő  |e aut 
700 0 2 |a Márta Katalin  |e aut 
700 0 2 |a Erőss Bálint Mihály  |e aut 
700 0 2 |a Molnár Zsolt  |e aut 
700 0 2 |a Párniczky Andrea  |e aut 
700 0 2 |a Hegyi Péter  |e aut 
700 0 2 |a Szentesi Andrea Ildikó  |e aut 
700 0 2 |a Kollaborációs szervezet Hungarian Pancreatic Study Group  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/24366/1/KissszSciRep2022.pdf  |z Dokumentum-elérés