Deep Learning Paradigm for Cardiovascular Disease/Stroke Risk Stratification in Parkinson’s Disease Affected by COVID‐19 A Narrative Review /
Background and Motivation: Parkinson’s disease (PD) is one of the most serious, non-curable, and expensive to treat. Recently, machine learning (ML) has shown to be able to predict cardiovascular/stroke risk in PD patients. The presence of COVID‐19 causes the ML systems to be-come severely non‐linea...
Elmentve itt :
Szerzők: |
Suri Jasjit S. Maindarkar Mahesh A. Paul Sudip Ahluwalia Puneet Bhagawati Mrinalini Saba Luca Faa Gavino Saxena Sanjay Singh Inder M. Chadha Paramjit S. Turk Monika Johri Amer M. Khanna Narendra N. Viskovic Klaudija Ruzsa Zoltán |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2022
|
Sorozat: | DIAGNOSTICS
12 No. 7 |
Tárgyszavak: | |
doi: | 10.3390/diagnostics12071543 |
mtmt: | 32959936 |
Online Access: | http://publicatio.bibl.u-szeged.hu/24990 |
Hasonló tételek
-
Understanding the bias in machine learning systems for cardiovascular disease risk assessment
Szerző: Suri Jasjit S., et al.
Megjelent: (2022) -
Integrative Analysis Reveals a Molecular Stratification of Systemic Autoimmune Diseases
Szerző: Barturen Guillermo, et al.
Megjelent: (2021) -
A Powerful Paradigm for Cardiovascular Risk Stratification Using Multiclass, Multi-Label, and Ensemble-Based Machine Learning Paradigms A Narrative Review /
Szerző: Suri Jasjit S., et al.
Megjelent: (2022) -
The sociolinguistic stratification of Hungarian in Subcarpathia
Szerző: Csernicskó István, et al.
Megjelent: (2000) -
Polygenic Risk Score for Cardiovascular Diseases in Artificial Intelligence Paradigm
Szerző: Khanna Narendra N, et al.
Megjelent: (2023)