Automated preprocessing of 64 channel electroenchephalograms recorded by biosemi instruments

Preprocessing is a mandatory step in electroencephalogram (EEG) signal analysis. Overcoming challenges posed by high noise levels and substantial amplitude artifacts, such as blink-induced electrooculogram (EOG) and muscle-related electromyogram (EMG) interference, is imperative. The signal-to-noise...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Kiss Ádám
Huszár Olívia Mária
Bodosi Balázs
Eördegh Gabriella
Tót Kálmán
Nagy Attila
Kelemen András
Dokumentumtípus: Cikk
Megjelent: 2023
Sorozat:METHODSX 11
Tárgyszavak:
doi:10.1016/j.mex.2023.102378

mtmt:34177906
Online Access:http://publicatio.bibl.u-szeged.hu/28658
LEADER 01963nab a2200301 i 4500
001 publ28658
005 20231109115850.0
008 231109s2023 hu o 0|| Angol d
022 |a 2215-0161 
024 7 |a 10.1016/j.mex.2023.102378  |2 doi 
024 7 |a 34177906  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a Angol 
100 1 |a Kiss Ádám 
245 1 0 |a Automated preprocessing of 64 channel electroenchephalograms recorded by biosemi instruments  |h [elektronikus dokumentum] /  |c  Kiss Ádám 
260 |c 2023 
300 |a 7 
490 0 |a METHODSX  |v 11 
520 3 |a Preprocessing is a mandatory step in electroencephalogram (EEG) signal analysis. Overcoming challenges posed by high noise levels and substantial amplitude artifacts, such as blink-induced electrooculogram (EOG) and muscle-related electromyogram (EMG) interference, is imperative. The signal-to-noise ratio significantly influences the reliability and statistical significance of subsequent analyses. Existing referencing approaches employed in multi-card systems, like using a single electrode or averaging across multiple electrodes, fall short in this respect. In this article, we introduce an innovative referencing method tailored to multi-card instruments, enhancing signal fidelity and analysis outcomes. Our proposed signal processing loop not only mitigates blink-related artifacts but also accurately identifies muscle activity. This work contributes to advancing EEG analysis by providing a robust solution for artifact removal and enhancing data integrity. 
650 4 |a Számítás- és információtudomány 
650 4 |a Általános orvostudomány 
700 0 1 |a Huszár Olívia Mária  |e aut 
700 0 1 |a Bodosi Balázs  |e aut 
700 0 1 |a Eördegh Gabriella  |e aut 
700 0 1 |a Tót Kálmán  |e aut 
700 0 1 |a Nagy Attila  |e aut 
700 0 1 |a Kelemen András  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/28658/1/Kissetal2023.pdf  |z Dokumentum-elérés