Inherited conics in Hall planes

The existence of ovals and hyperovals is an old question in the theory of non-Desarguesian planes. The aim of this paper is to describe when a conic of PG(2,q) remains an arc in the Hall plane obtained by derivation. Some combinatorial properties of the inherited conics are obtained also in those ca...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Blokhuis Aart
Kovács István
Nagy Gábor Péter
Szőnyi Tamás
Dokumentumtípus: Cikk
Megjelent: 2019
Sorozat:DISCRETE MATHEMATICS 342 No. 4
Tárgyszavak:
doi:10.1016/j.disc.2018.12.009

mtmt:30401306
Online Access:http://publicatio.bibl.u-szeged.hu/29120
LEADER 01300nab a2200253 i 4500
001 publ29120
005 20231218120844.0
008 231218s2019 hu o 0|| Angol d
022 |a 0012-365X 
024 7 |a 10.1016/j.disc.2018.12.009  |2 doi 
024 7 |a 30401306  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a Angol 
100 1 |a Blokhuis Aart 
245 1 0 |a Inherited conics in Hall planes  |h [elektronikus dokumentum] /  |c  Blokhuis Aart 
260 |c 2019 
300 |a 1098-1107 
490 0 |a DISCRETE MATHEMATICS  |v 342 No. 4 
520 3 |a The existence of ovals and hyperovals is an old question in the theory of non-Desarguesian planes. The aim of this paper is to describe when a conic of PG(2,q) remains an arc in the Hall plane obtained by derivation. Some combinatorial properties of the inherited conics are obtained also in those cases when it is not an arc. The key ingredient of the proof is an old lemma by Segre–Korchmáros on Desargues configurations with perspective triangles inscribed in a conic. 
650 4 |a Matematika 
700 0 1 |a Kovács István  |e aut 
700 0 1 |a Nagy Gábor Péter  |e aut 
700 0 1 |a Szőnyi Tamás  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/29120/1/BlokhuisKovacsNagySzonyiInheritedconicsinHallplanes2019.pdf  |z Dokumentum-elérés