On eigenvectors of the Pascal and Reed-Muller-Fourier transforms
In their paper at the International Symposium on Multiple-Valued Logic in 2017, C. Moraga, R. S. Stankovi´c, M. Stankovi´c and S. Stojkovi´c presented a conjecture for the number of fixed points (i.e., eigenvectors with eigenvalue 1) of the Reed-Muller-Fourier transform of functions of several varia...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2018
|
Sorozat: | Acta cybernetica
23 No. 3 |
Kulcsszavak: | Reed-Muller-Fourier-transzformáció, Pascal-transzformáció, Többváltozós függvény, Logika, Transzformáció |
Tárgyszavak: | |
Online Access: | http://acta.bibl.u-szeged.hu/55688 |
Tartalmi kivonat: | In their paper at the International Symposium on Multiple-Valued Logic in 2017, C. Moraga, R. S. Stankovi´c, M. Stankovi´c and S. Stojkovi´c presented a conjecture for the number of fixed points (i.e., eigenvectors with eigenvalue 1) of the Reed-Muller-Fourier transform of functions of several variables in multiple-valued logic. We will prove this conjecture, and we will generalize it in two directions: we will deal with other transforms as well (such as the discrete Pascal transform and more general triangular self-inverse transforms), and we will also consider eigenvectors corresponding to other eigenvalues. |
---|---|
Terjedelem/Fizikai jellemzők: | 959-979 |
ISSN: | 0324-721X |