On eigenvectors of the Pascal and Reed-Muller-Fourier transforms

In their paper at the International Symposium on Multiple-Valued Logic in 2017, C. Moraga, R. S. Stankovi´c, M. Stankovi´c and S. Stojkovi´c presented a conjecture for the number of fixed points (i.e., eigenvectors with eigenvalue 1) of the Reed-Muller-Fourier transform of functions of several varia...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Waldhauser Tamás
Dokumentumtípus: Cikk
Megjelent: 2018
Sorozat:Acta cybernetica 23 No. 3
Kulcsszavak:Reed-Muller-Fourier-transzformáció, Pascal-transzformáció, Többváltozós függvény, Logika, Transzformáció
Tárgyszavak:
Online Access:http://acta.bibl.u-szeged.hu/55688
Leíró adatok
Tartalmi kivonat:In their paper at the International Symposium on Multiple-Valued Logic in 2017, C. Moraga, R. S. Stankovi´c, M. Stankovi´c and S. Stojkovi´c presented a conjecture for the number of fixed points (i.e., eigenvectors with eigenvalue 1) of the Reed-Muller-Fourier transform of functions of several variables in multiple-valued logic. We will prove this conjecture, and we will generalize it in two directions: we will deal with other transforms as well (such as the discrete Pascal transform and more general triangular self-inverse transforms), and we will also consider eigenvectors corresponding to other eigenvalues.
Terjedelem/Fizikai jellemzők:959-979
ISSN:0324-721X