A note on existence of patterns on surfaces of revolution with nonlinear flux on the boundary
In this note we address the question of existence of non-constant stable stationary solution to the heat equation on surfaces of revolution subject to nonlinear boundary flux involving a positive parameter. Our result is independent of the surface geometry and, in addition, we provide the asymptotic...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet |
doi: | 10.14232/ejqtde.2019.1.49 |
Online Access: | http://acta.bibl.u-szeged.hu/62273 |
Tartalmi kivonat: | In this note we address the question of existence of non-constant stable stationary solution to the heat equation on surfaces of revolution subject to nonlinear boundary flux involving a positive parameter. Our result is independent of the surface geometry and, in addition, we provide the asymptotic profile of the solutions and some examples where the result applies. |
---|---|
Terjedelem/Fizikai jellemzők: | 1-8 |
ISSN: | 1417-3875 |