Blow-up analysis in a quasilinear parabolic system coupled via nonlinear boundary flux
This paper deals with the blow-up of the solution for a system of evolution pLaplacian equations uit = div(|∇ui p−2∇ui) (i = 1, 2, . . . , k) with nonlinear boundary flux. Under certain conditions on the nonlinearities and data, it is shown that blow-up will occur at some finite time. Moreover, when...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2021
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet |
doi: | 10.14232/ejqtde.2021.1.13 |
Online Access: | http://acta.bibl.u-szeged.hu/73665 |
Tartalmi kivonat: | This paper deals with the blow-up of the solution for a system of evolution pLaplacian equations uit = div(|∇ui p−2∇ui) (i = 1, 2, . . . , k) with nonlinear boundary flux. Under certain conditions on the nonlinearities and data, it is shown that blow-up will occur at some finite time. Moreover, when blow-up does occur, we obtain the upper and lower bounds for the blow-up time. This paper generalizes the previous results. |
---|---|
Terjedelem/Fizikai jellemzők: | 13 |
ISSN: | 1417-3875 |