Blow-up analysis in a quasilinear parabolic system coupled via nonlinear boundary flux

This paper deals with the blow-up of the solution for a system of evolution pLaplacian equations uit = div(|∇ui p−2∇ui) (i = 1, 2, . . . , k) with nonlinear boundary flux. Under certain conditions on the nonlinearities and data, it is shown that blow-up will occur at some finite time. Moreover, when...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Zheng Pan
Xu Zhonghua
Gao Zhangqin
Dokumentumtípus: Folyóirat
Megjelent: 2021
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
doi:10.14232/ejqtde.2021.1.13

Online Access:http://acta.bibl.u-szeged.hu/73665
Leíró adatok
Tartalmi kivonat:This paper deals with the blow-up of the solution for a system of evolution pLaplacian equations uit = div(|∇ui p−2∇ui) (i = 1, 2, . . . , k) with nonlinear boundary flux. Under certain conditions on the nonlinearities and data, it is shown that blow-up will occur at some finite time. Moreover, when blow-up does occur, we obtain the upper and lower bounds for the blow-up time. This paper generalizes the previous results.
Terjedelem/Fizikai jellemzők:13
ISSN:1417-3875