Mixing convergence of LSE for supercritical AR(2) processes with Gaussian innovations using random scaling

We prove mixing convergence of the least squares estimator of autoregressive parameters for supercritical autoregressive processes of order 2 with Gaussian innovations having real characteristic roots with different absolute values. We use an appropriate random scaling such that the limit distributi...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Barczy Mátyás
Nedényi Fanni
Pap Gyula
Dokumentumtípus: Cikk
Megjelent: 2024
Sorozat:METRIKA 87 No. 6
Tárgyszavak:
doi:10.1007/s00184-023-00936-y

mtmt:34675847
Online Access:http://publicatio.bibl.u-szeged.hu/36716
Leíró adatok
Tartalmi kivonat:We prove mixing convergence of the least squares estimator of autoregressive parameters for supercritical autoregressive processes of order 2 with Gaussian innovations having real characteristic roots with different absolute values. We use an appropriate random scaling such that the limit distribution is a two-dimensional normal distribution concentrated on a one-dimensional ray determined by the characteristic root having the larger absolute value.
Terjedelem/Fizikai jellemzők:729-756
ISSN:0026-1335